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ZF A N D  B O O L E A N  A L G E B R A  *'tt 

BY 

J. M. PLOTKIN 

A B S T R A C T  

A generically embedded Boolean algebra is studied. Several results about 
infinite complete Boolean algebras are shown to be independent of ZF. 

. 

The study of Boolean algebras would lose much of its glamour if it were 

denied the topological duality theory introduced by M. H. Stone [21]. Funda- 

mental to this theory is the Boolean Prime Ideal theorem which is a consequence 

of the axiom of choice. In [7] Feferman showed the Prime Ideal theorem to be 

independent of Zermelo-Fraenkel set theory (ZF). 

The axiom of choice make~ its presence felt throughout the theory of Boolean 

algebras. For example in ZF with the axiom of choice (ZFC) every infinite 

Boolean algebra has a countably infiniie disjointed subset [5, p. 7], and hence 

every infinite complete Boolean algebra has a subalgebra isomorphic to P(oJ), 

the power set of oJ [20, p. 66]. Numerous other such consequences of ZFC can be 

gleaned from [5, 11,20]. Assuming the consistency of ZF, one can ask whether 

these results are independent of ZF. In this paper we show that many are. 

In Section 1 we construct a "choiceless" model of ZF via generic embedding 

of an atomless Boolean algebra and we study some of the basic properties of this 

model. In Section 2 we prove that the embedded algebra is complete and we 

discuss its free subalgebras. In Section 3 we study two types of decompositions of 

complete Boolean algebras: direct unions and inverse limits. 

Our basic references are: [20] for Boolean algebra and [3] for logic. All terms 

which we leave undefined can be found in these works. 

This paper is dedicated to my parents in their 50th year of marriage. 
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l° 

We refer the reader to [17] for a description of generic embedding. We now 

briefly summarize the major result of [17]. 

T denotes a complete first order theory with equality which has infinite 

models and is ~o-categorical. L(T)  and F(T) denote the language of T and the 

formulas in this language, respectively. For B a model of T, D~ (B) denotes the 

set of all n-ary relations on B which are definable by elements of F(T), possibly 

with parameters from B, i.e., if 

S={(b~, '" ,b~)t  B l=~(b~," ' ,b~ ,a , , " ' ,a~)}  

where q~(y,,..., y, ,x, , . . . ,x~,)@ F(T) and a, E B l<-_i<-_m, then S E D~(B). 

CONVENTION. We write D(B)  instead of D,(B). 

M is a countable standard transitive model of ZFC. In M there is a countable 

(in M) model A of T. 

DEFINITION. 

i) A set S is finite if there is a bijection between S and some ordinal less than 

co. Otherwise S is infinite. 

ii) A set S is Dedekind finite if it has no infinite well orderable subsets, or 

equivalently there are no bijections between S and any of its proper subsets. 

iii) For any set S, ]SJ denotes the cardinality of S. I SI is said to be finite, 

infinite, or Dedekind finite just in case S is. 

We now give the main theorem of [17]. 

THEOREM 1.0. There is a model N of ZF such that N is a generic extension of 
M and such that N contains an isomorphic (in the real world) copy A ofA.  A is 

infinite, Dedekind finite, and the set of n-ary relations on A in N is just D, (A ). 

For the remainder of this paper T will denote the first order theory of 

atomless Boolean algebras. L (T) has as its nonlogical symbols binary operation 

symbols A, U, a unary operation symbol - ,  and constants 0, 1. We introduce 

the following abbreviations for certain elements of F(T) :  we write t, ~ t2 for 

- q  ( t l  = t2), t~ - t: for tt (3 tz = t,, and t, < t2 for t, fq t2 = t, A --a(t, = t2). In what 

follows we let the context differentiate the formal symbols from their intended 

interpretations. B will always denote a Boolean algebra. For S C_ B we let (S) 

denote the subalgebra generated by S. For a E B a ° is a and a '  is d (we also 

apply this convention to terms of L(T)). 

T is complete and N,,-categorical [3] so the methods of [17] apply. Let M be a 
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countable standard transitive model of Z F C - - w e  assume such things exis t - -  

and let fi, be (in M) a countable atomless Boolean algebra. Let N and A E N 

be as guaranteed by Theorem 1.0. In N, A is an infinite, Dedekind finite 

atomless Boolean algebra. (Thus being atomless is compatible with at least one 

kind of "finiteness".). 

We devote ourselves to ferreting out the properties that A enjoys relative to 

N. These properties will be stated as propositions concerning A. In general these 

statements will be followed by remarks giving the known situation in ZFC. The 

overall result will be that certain facts about Boolean algebras are independent 

of ZF. 

Our first result is an observation based on work of J. Grant [8] and K. 

McAloon [14]. 

PROPOSITION 1.1. A has no non-trivial automorphism. 

PROOF. Any automorphism of A belongs to D2(A) by Theorem 1.0. Grant 

has shown that any two models of a complete theory have the same group of 

definable automorphisms. In [14] McAloon remarks that there exist atomless 

Boolean algebras which have no non-trivial automorphisms. In particular these 

algebras have no non-trivial definable automorphisms. By absoluteness of the 

necessary notions A is a "real world" model of T. Hence the D2(A ) automorph- 

isms of A are trivial. 

Since A is both infinite and Dedekind finite, the axiom of choice is false in N. 

Actually the nature of T and A enable us to show that the axiom of choice for 

sets of unordered pairs is false in No 

We need some preliminary definitions and lemmas. 

DEFINITION. S _C B. S is independent if for each finite subset {s,,. •., s, } C_ S 

and each sequence (~q, . . . ,  y , )E"{0,1},  s]" n . . .  n s,~-~0. Further for b C B 

and S C_ B, b is independent of S if for each s ~ S, s ~  0, s ~  1 we have {b,s} is 

independent. 

LEMMA 1.2. b E B, S a subalgebra of B, b independent of S. Let B ' =  

(S U {b}). There is an automorphism a of B'  such that a(s)  = s for all s E S and 

a(b)  = 6. 

PROOF. This lemma is a version of lemma 22.15 of [5]. We sketch its proof. 

Since b is independent of S, every element of B'  can be uniquely written as 

(s, n b) U (s2 n/~) where s,, s2 E S. Define a by 
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o~ ((s, n b) u (s~ n E)) = (s~ n b) U (s, n 6).  

cz is the desired automorphism. 

LEMMA 1.3. B atomless. S C B a finite subalgebra. There is a b ~ B such 

that b is independent of S. 

PROOF. Let s~ , . . . , s ,  be the atoms (in sense of S) which generate S. Since b 

is atomless for each i, 1 =< i=  < n, there is a b, E B with 0 <  b~ < s~. Let b = 

bl U -. • U b,. It is easily verified that b is independent of S. 

LEMMA 1.4. B countable and atomless. S @ D(B) .  There is a b E B such that 

either b, b E S or b, bE S. 

PROOF. Assume S = { b [ B ~ ( b , a ~ , . . . , a , , ) } w h e r e ~ ( y ,  x t , . . . , x m ) E F ( T )  

and a~ E B 1 =< i _-< m. Let S'  = ( { a t , "  ", a,,}). By Lemma 1.3 there is a b E B 

which is independent of S '  (hence 6 is also independent of S'). We now prove 

that if b E S  then b E S .  If b E S  then B~q~(b ,a t , . . . , am) .  From Lemma 1.2 

there is an automorphism a of (S 'U{b})  such that c~(a,) = at, 1 _-< i =< m, and 

a(b )  =/~ Since B is countable and atomless, a zig-zag argument shows that 

can be extended to an automorphism /3 of B (see [1] for such an argument  for 

atomless Boolean rings). Alternatively we can make the following observations: 

T is No-categorical and since B is a countable model of T, B is an atomic model 

[3, p. 93]. Hence ( a l ,  " " ' ,  a,,, b) satisfies some atom of F,,+,(T), the formulas of T 

with at most m + 1 free variables. But T admits an elimination of quantifiers (see 

Section 2, Lemma 2.0). Thus ( a , , . . . ,  a,,, b) satisfies a quantifier free atom of 

Fm+,(T). The existence of c~ shows that ( a~ , . . . ,  a,,,/~) satisfies the same atom. 

Since B is atomic and countable there is an automorphism /3 of B such 

that /3(a~)=a~, i<=i<=m, and /3(b)=/~. In any case we have 

B~q~(/3(b), /3(a,) ,  .. .,/3(a,,)). Thus B~qt(b,a~,  .. . ,a,,) and / ~  S. A similar 

argument  works if /~ E S. Thus either b,/~ E S or b , / ~  S. 

PROr'OSmON 1.5. The axiom of choice for sets of unordered pairs is false in N. 

PRooF. Consider A. Let C = {{a, a}l a E A }. A choice set S for C would be 

a subset of A such that for each a E A either a E S or d E S but not both. By 

Theorem 1.0 $ E D ( A ) .  For some • E F ( T )  we would have 

A # "For  all x either ~ ' (x)  or ~(Y) but not bo th" .  

Now the same sentence must also be true in A~. This is impossible by Lemma 1.4. 

Thus no such $ exists. 
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COROLLARY 1.6. A has no ultrafilters. 

PROOF. Amongst other things an ultrafilter serves as a choice set for the 

above set C. 

REMARKS. For B, S(B)  denotes the set of ultrafilters of B. If B is finite, 

] S(B)[ = n where n is the number of atoms of B. For B infinite, Makinson [13] 

and Grfitzer [9] have shown in ZFC that I S(B)I _->IB ]. Corollary 1.6 shows this 

result cannot be proven in ZF. This conclusion could also be drawn from [7] 

where Feferman constructs a model of ZF in which P(w) has non nonprincipal 

ultrafilters. If F is the filter of cofinite subsets of oJ, then the Boolean algebra 

P(oJ)/F in Feferman's model is infinite and has no ultrafilters. This algebra, 

however, is far from Dedekind finite since P(to) contains a family of infinite 

subsets of ~ of cardinality of the continuum which are pairwise almost disjoint 

[19, p. 81]. 

. 

In order to gain more insight into the properties of A we need to study its 

subsets. Fortunately this reduces to an examination of D(A ). Our task is made 

less burdensome by the fact that T admits an elimination of quantifiers. 

LEMMA 2.0. Let X F ( x , , . . . , x , ) ~ F ( T )  with free variables x , , . . . , x . .  Then 

T k ~ ( x , , . . . , x , ) ~ - > V i ( A , a ~ j ( x , , ' " , x . ) )  where each a, i is either i) x ' ( ' N . . .  

nx ,~ -=0  or ii) x 2 n . . . n x , ~ - / 0  where y, ~{0,1}. 

PROOF. (Indication.) Proceed by induction on logical complexity of for- 

mulas. Use some elementary facts on Boolean algebras to insure the presence of 

each free variable in each conjunct and use the usual quantifer  elimination 

techniques as described in [3]. 

LEMMA 2.1. B atomless, b, E B, 1 <= i =< n. C = ({b, , . . . ,  b,}), 

• ( y , x , , - . . , x , ) G  F(T). Let T, be the inessential expansion of T obtained by 

adding constants bi, q, d, c,j for the elements of C. Then 

T~-~(y,b, , . - . ,b~), ,-~ V ( y N c ; = O ^ } T N d j = O ^  A 
I< j<n  l~ i~=t  

PROOF. 

NOTE. 

(y ~,~ n c,j / 0)). 

Apply Lemma 2.0 and observe that 

T, ky ~ N a = 0 A y ~ N b = 0 , ~ - ~ y  ~ n ( a u b ) = 0 .  

In the above disjunction we can always assume that for each j the 
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conjuncts y N q = 0, )7 N dj = 0 are present by adding y N 0 = 0 and )7 n 0 = 0 if 

necessary. 

LEMMA 2.2. B atomless, S E D(B) .  Then S = U ,~j~.Sj where either 
i) S,=[di,  a i ] n { b ~ B [ A , b : ' , , n c , i J O }  

or 

ii) S, = [di ,  ai] 

and where [g, ai] = {b E B Id ,  <= b <= ai}. 

PROOF. This is just a translation of Lemma 2.1. In this translation ar is t? r. 

LEMMA 2.3. B atomless, a, E B, a, JO,  l<=i<=n. Then there exist fi with 
O < f~ < a, such that fi n f~ =0 for i J j. 

PROOF. Induction on n. 

LEMMA 2.4. B atomless, S @ D(B) .  Then 

i) the meet and join of S exist; 
ii) if S is a filter (ideal), then S is principal. 

PROOV. i) First we prove that the meet of S exists. By Lemma 2.2, 

S -- U ,_<j~. S,. Hence to show that the meet of S exists it suffices to show that 

the meet of S r exists, l=<j=<n, for then meet S = m e e t  S , O . . . O  meet S,. 

Appealing to Lemma 2.2 we assume that 

Sr =[dr, a r ] N { b E B I A  b'" n q , ~ O }  

and that I = {i]70 = 0}~ 0 .  We leave the other cases to the reader. We claim 

that the meet of Sr is dr. If dr E Sr we are done. Assume d, ~ St. Thus there is a 

b • Sr with dr < b. Now b n cqJ  0 for all i E I. By Lemma 2.3 we can choose 

{ f l i  E I} such that 0 <  f, < b n cq with f~, n fi2= 0 for i, ~ i2. Now using this 

same lemma choose ei such that 0 < 6 < f ~ .  Let e = d r u ( U ~ , e i )  and let 

f = d/O (U~c, (~, N f,)). If i @ I then e n qr~  0 and f n cq~ O. If i ~  I, then since 

e,f_-<b and / T n q r J 0  we have ~ n c q J 0  and f n c q ~ 0 .  Thus, e, f E S r .  By 

construction e n f = dr. Thus since d r _-< b for each b ~ S i we have dr is the meet 

of S i. Hence d ~ n . . . n d ,  is the meet of S. Let S = { b E B i / T E S } .  Since 

S E D(B) ,  S E D(B) .  By the above argument the meet of S exists. But the meet 

of S equals the join of S. Thus the join of S exists. 

ii) If S is a filter the argument of part (i) shows that dr E S and hence that 

S = {b ~E B ]dl O . . .  n d ,  < b}. Note that S is an ideal implies S is a filter. So 

ideal or filter S must be principal. We now immediately obtain: 
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PROPOSITION 2.5. 

i) A is a complete Boolean algebra and every subalgebra of A is a complete 

subalgebra of A. 

ii) Every filter (ideal) of A is principal. 

PROOF. i) the fact that subalgebras are complete subalgebras (which is 

more than just complete as a Boolean algebra) follows from the proof of Lemma 

2.4 (i). 

REMARKS. Pierce has shown in ZFC that an infinite cardinal K is the 

cardinality of an infinite complete B if and only if K N°= K [15]. Since A is 

Dedekind finite, t A I '% ~ I A I. Also in ZFC infinite complete B have subalgeb- 

ras isomorphic to P(to) [20, p. 66]. The Dedekind finiteness of A implies that A 

has no such subalgebra. In [6] Dwinger studied ideals of infinite complete B. For 

principal ideals I, B / I  is complete and the natural homorphism u: B --~ B / I  is 

complete. Dwinger showed that in ZFC an infinite complete B has ideals I, J 

such that B / I  is complete but v: B--~ B / I  is not complete and such that B / J  is 

not complete. Proposition 2.5 (ii) shows that A has no such ideals. Thus all the 

above ZFC properties of infinite complete Boolean algebras are independent of 

ZF. 

DEFINITION. S _C B. S is disjointed if for all s~, s2 E S if sl # s2 then s~ N s2 = 0. 

B is said to satisfy the countable chain condition (c.c.c.) if S C_ B and S 

disjointed implies IS I_- < ~1o. 

LEMMA 2.6. B atomless. S @ D ( B )  and S infinite then 

i) S is not disjointed; 

ii) is not independent. 

PROOF. The proof is an easy variant of that of Lemma 2.4. S = U ,~,~,Sj. 

Some Sk must be infinite and hence there is a b E Sk with dk < b. It is easy to 

construct e, f E  Sk such that e A f t 0  and e #  f. Thus S is not disjointed. 

Similarly one can construct e, f E Sk such that e N f = 0 and e ~ f. Thus S is not 

independent. 

PROPOSITION 2.7. 

i) A has no infinite disjointed subsets. A has c.c.c.; 

ii) A has no infinite independent subsets. 

PROOF. Lemma 2.6. 



Vol. 23, 1976 ZF AND BOOLEAN ALGEBRA 305 

REMARKS. A of course has arbitrarily large finite disjointed subsets and finite 

independent subsets. In ZFC every infinite B has a countable disjointed subset 

[5, p. 7]. 

Independence is intimately related to freeness. If B is free on a set of 

generators E, then E is an independent set [20, p. 43]. 

PROPOSITION 2.8. A has no infinite free subalgebras. 

REMARKS. In ZFC every atomless (or infinite complete) B has an infinite free 

subalgebra [5, p. 56]. In [18, p. 241] it is reported that Solovay has proven that if 

B is infinite, complete and has c.c.c, then B has a free subalgebra on I BI  

generators. More generally, S. V. Kislyakov has shown that for B iafinite and 

complete I B[ is the exact upper bound of the cardinalities of the free 

subalgebras of B [12]. A shows that both these results cannot be proven in ZF. 

Free subalgebras are also connected to the notion of a superatomic Boolean 

algebra. B is said to be superatomic if every subalgebra of B is atoraic. Day has 

shown that in ZFC, B is superatomic if and only if B has no infinite free 

subalgebras [4]. A shows that this characterization breaks down in ZF. 

, 

Our final results deal with decompositions of complete Boolean algebras. 

DEFINITION. a C B. B I a = {b E B I b  _-__ a}. 
B I a is a Boolean algebra using complementation relative to a. B is said to be 

weakly homogeneous if for each a / 0 ,  a ~ B  we h a v e l B ] = l B  I a]- 

Direct unions of Boolean algebras are just direct products of such algebras. 

Direct unions of complete Boolean algebras have the following internal charac- 

terization [15]: 
A complete B is isomorphic to the direct union of complete B~,a E I if and 

only if there is a disjointed set S = {s,, ]a E I}C B such that the join of S is I and 

B [s, is isomorphic to B~, for all a • L 

PROPOSITION 3.0. A is not the direct union of complete weakly homogeneous 

Boolean algebras. 

PROOF. We use the internal characterization of direct unions. Any disjointed 

subset of A is finite by Proposition 2.7 (i). Let S be such a disjointed subset 

whose join is 1. Since A is infinite, A r s is infinite for some s E S. But A I s is 

also Dedekind finite. Thus for b E A  Is,  b ~ 0 ,  b / s ,  we have (A I s )  I b, 
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which is A [b, is a proper subset of A Is; and hence IA rs ] fi IA rb ] and A [s is 

not weakly homogeneous. 

REMARKS. In ZFC every complete B is the direct union of complete weakly 

homogeneous Boolean algebras [20, p. 107]. 

Representations of infinite Boolean algebras as inverse limits of inverse 

families of Boolean algebras were introduced by Haimo in [10]. To discuss such 

representations we need some preliminary definitions. 

DEFINITION. A partially ordered set (/, =< ) is said to be upper directed if any 

two elements of I have an upper bound in /. 

DEFINITION. Let (L --< ) be an upper directed partially ordered set. A collec- 

tion of Boolean algebras {B, ] i E I} and homomorphisms {¢¢~ ] i _-< j, i, j E I} is 

called an inverse family of Boolean algebras if 

i) q~q: B, ~ B,; 

ii) ~,, is the identity on B,; 

iii) ~,k = ~',j ° ~jk, i = j _-< k. 

DEFINITION. The inverse limit B ~ of such an inverse family is the set of all 

p • H,~,B, such that for all i =<j, ~,i (p Q )) -- p(i). B ~ is a Boolean subalgebra of 

l-l,~,B~. Associated with B ~ we have certain canonical homomorphisms 7r~, i E I, 

where ~,: B ~  B, and Try(p) = p(i). 

B is said to have an inverse limit representation if there is an inverse family 

{ B , ] i E I } ,  {~qli, j E I }  and an isomorphism ~ : B - - > B  ~. In this case the 

mappings ~ :  B-->B~ defined by ~,  =~r~ o~  are called the decomposition 

homomorphisms of the representation. This terminology was introduced by 

Beazer in [2] where he showed that by a simple modification of the original 

inverse family in a representation one can assume that each ~o,j and each ~,  is 

surjective. We assume that such is the case for all representations. 

Haimo showed that every infinite Boolean algebra has an inverse limit 

representation [10]. In some sense Haimo's representations are trivial since 

some of the decomposition homomorphisms are isomorphisms. 

Following Beazer we have: 

DEFINITION. B is inversely reducible if it has an inverse limit representation in 

which no decomposition homomorphism is an isomorphism. 

The following lemma is inspired by [2]. 
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LEMMA 3.1. B complete and represented by {B, l i E I}, {¢q l i, j ~ I} via 
• :B---~BL If for each i E l  K e r ~ , = { x l x < = b , }  where b, J 0 ,  b ~ B ,  then 
{b, [i C I} generates a proper nonprincipal filter V of B. 

PROOF. Note that for i<= j, ~u°~" =Tn and thus ~qoqt i = ~ , .  For i=<j 

consider b,, b,. ¢,i °~i(bi )= 0. Hence ~ ( b , ) =  0 and bi --< b~. Let {i . , - . . ,  i,} be a 

finite subset of I. Since I is upper directed, there is a k G I with i, =< k, 1 =< j =< n. 

By our opening remarks we must have bk =< bq, 1 < j  <= n. Hence b~,f3 

• • • n b~, J 0. Thus {b, I i c I} has the finite intersection property and generates a 

proper filter V. We claim that the meet of {b, l i E I}, which exists since B is 

complete, is 0. Suppose c =< b, for all i E I. Then c E Ker'J, fi and qt(c)(i) = 0 for 

all i. Thus ~ (c )  = 0. But then c = 0. Since the meet of {b, I i E I} is 0, V cannot be 

principal. 

PROPOSmON 3.2. A is not inversely reducible. 

PROOF. Suppose A were inversely reducible via ~:  A ~ B ~, B = the inverse 

limit of {B~ ]i (E I}, {(¢,, [i,j C I}. By inverse reducibility we have that no $ ,  is an 

isomorphism. Thus Ker~,,- ~/0} for each i. By Proposition 2.5 (ii) every ideal of 

A is principal. Hence Ker~ ,  = {x Ix -< a,/, a ~  0. By Lemma 3.1, which holds in 

N, {a~ [i E I} generates a nonprincipal filter of A. But again by Proposition 2.5 

(ii) every filter of A is principal. This contradiction shows that A is not inversely 

reducible. 

REMARKS. Beazer proved that every infinite complete Boolean algebra is 

inversely reducible [2]. His proof used the Prime Ideal theorem. Hence by 

Proposition 3.2 Beazer's result is independent of ZF. 

The referee kindly informs us of overlap of this work with that of U. Feigner. 

Felgner, in his Habilitations-Schrift of 1971, constructed a model N in which the 

following held: orderextension, choice for sets of wellorderable sets, countable 

unions of countable sets are countable, the union of a wellordered family of 

wellorderable sets is wellorderable, the Kinna-Wagner-Kuratowsky choice 

axiom, ~ B P I ,  and ~ A C  '°. Further, N contains a Boolean algebra B which is 

infinite, Dedekind-finite, not isomorphic to a field of sets, has no prime ideal, is 

rigid, has no infinite independent subset, and is atomless and complete. 

REFERENCES 

1. A. Abian, Categoricity ofdenumerable atomless Boolean rings, Studia Logica 30 (1972), 63-67. 
2. R. Beazer, An inverse limit representation for complete Boolean algebras, Glasgow Math. J. 13 

(1972), 164-166 



308 J . M .  PLOTKIN Israel J. Math. 

3. C. C. Chang, and H. J. Keisler, Model Theory, North Holland, 1973. 
4. G. W. Day, Free complete extensions o[ Boolean algebras, Pacific J. Math. 15 (1965), 

1145-1151. 
5. Ph. Dwinger, Introduction to Boolean Algebras, Physica-Verlag, Wiirzburg, 1971. 
6. Ph. Dwinger, On the completeness of the quotient algebras o[ a complete Boolean algebra II, 

Indag. Math., 21 (1959), 26-35. 
7. S. Feferman, Some applications o[ the notion o[ forcing and generic sets, Fund. Math. 56 

(1965), 325-345. 
8. J. Grant, Automorphisms defnable by [ormulas, Pacific J. Math. 44 (1973), 107-115. 
9. G. Gr~itzer, Lectures on Lattice Theory, Vol. 1, W. H. Freeman, San Francisco, 1971. 
10. F. Haimo, Some limits o[ Boolean algebras, Proc. Amer. Math. Soc. 2 (1951), 566-576. 
11. P. R. Halmos, Lectures on Boolean Algebras, Van Nostrand, 1967. 
12. S. V. Kislyakov, Free subalgebras o[ complete Boolean algebras and spaces o[ continuous 

[unctions, Siberian Math. J. 14(3) (1973). 
13. D. C. Makinson, On the number o[ ultraflters of an infinite Boolean algebra, Z. Math. Logik 

Grundlagen Math. 15 (1969), 121-122. 
14. K. McAloon, Consistency results about ordinal de[inability, Ann. Math. Logic 2 (1970), 

449-467. 
15. R. S. Pierce, A note on complete Boolean algebras, Proc. Amer. Math. Soc. 9 (1958), 

892-896. 
16. R. S. Pierce, Some questions about complete Boolean algebras, Proc. Symp. Pure Math. 2 

(1961), 129-140. 
17. J. M. Plotkin, Generic embeddings, J. Symbolic Logic 34 (1969), 388-394. 
18. H. P. Rosenthal, On injective Banach spaces and the spaces L~(ix ), Acta Math. 124 (1970), 

2(15-248. 
lt). W. Sierpinski, Cardinal and Ordinal Numbers, Warsaw, 1965. 
20. R. Sikorski, Boolean Algebras, Academic Press, 1964. 
21. M. H. Stone, Applications of the theory of Boolean rings to general topology, Trans. Amer. 

Math. Soc. 91 (1937), 375-481. 

MICHIGAN STATE UNIVERSITY 
EAST LANSING, MICHIGAN 48824 U.S.A. 


